Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149859, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581948

RESUMO

Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to ß-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that ß-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.


Assuntos
Campylobacter jejuni , Peptidil Transferases , Humanos , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Ampicilina/farmacologia , Proteínas de Bactérias
2.
J Enzyme Inhib Med Chem ; 39(1): 2305833, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38410950

RESUMO

Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.


Assuntos
Lisina , Serina , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Ácidos Borônicos/farmacologia , Antibacterianos/farmacologia , Iminas
3.
J Biomol Struct Dyn ; 42(1): 298-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974951

RESUMO

Antibacterial resistance to ß-lactams in microorganisms has been attributed majorly to alterations in penicillin-binding proteins (PBPs) coupled with ß-lactams' inactivation by ß-lactamase. Consequently, the identification of a novel class of therapeutics with improved modulatory action on the PBPs is imperative and plant secondary metabolites, including phenolics, have found relevance in this regard. For the first time in this study, the over 10,000 phenolics currently known were computationally evaluated against PBP3 of Pseudomonas aeruginosa, a superbug implicated in several nosocomial infections. In doing this, a library of phenolics with an affinity for PBP3 of P. aeruginosa was screened using structure-activity relationship-based pharmacophore and molecular docking approaches. Subsequent thermodynamic screening of the top five phenolics with higher docking scores, more drug-likeness attributes, and feasible synthetic accessibility was achieved through a 120 ns molecular dynamic (MD) simulation. Four of the top five hits had higher binding free energy than cefotaxime (-18.72 kcal/mol), with catechin-3-rhamside having the highest affinity (-28.99 kcal/mol). All the hits were stable at the active site of the PBP3, with catechin-3-rhamside being the most stable (2.14 Å), and established important interactions with Ser294, implicated in the catalytic activity of PBP3. Also, PBP3 became more compact with less fluctuation of the active site amino acid residues following the binding of the hits. These observations are indicative of the potential of the test compounds as PBP3 inhibitors, with catechin-3-rhamside being the most prominent of the compounds that could be further improved for enhanced druggability against PBP3 in vitro and in vivo.Communicated by Ramaswamy H. Sarma.


Assuntos
Catequina , Pseudomonas aeruginosa , Proteínas de Ligação às Penicilinas/química , Pseudomonas aeruginosa/metabolismo , Simulação de Acoplamento Molecular , Quimioinformática , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/farmacologia , beta-Lactamas/química , beta-Lactamas/metabolismo
4.
Exp Biol Med (Maywood) ; 248(19): 1657-1670, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38030964

RESUMO

Bacterial cell wall formation is essential for cellular survival and morphogenesis. The peptidoglycan (PG), a heteropolymer that surrounds the bacterial membrane, is a key component of the cell wall, and its multistep biosynthetic process is an attractive antibacterial development target. Penicillin-binding proteins (PBPs) are responsible for cross-linking PG stem peptides, and their central role in bacterial cell wall synthesis has made them the target of successful antibiotics, including ß-lactams, that have been used worldwide for decades. Following the discovery of penicillin, several other compounds with antibiotic activity have been discovered and, since then, have saved millions of lives. However, since pathogens inevitably become resistant to antibiotics, the search for new active compounds is continuous. The present review highlights the ongoing development of inhibitors acting mainly in the transpeptidase domain of PBPs with potential therapeutic applications for the development of new antibiotic agents. Both the critical aspects of the strategy, design, and structure-activity relationships (SAR) are discussed, covering the main published articles over the last 10 years. Some of the molecules described display activities against main bacterial pathogens and could open avenues toward the development of new, efficient antibacterial drugs.


Assuntos
Antibacterianos , beta-Lactamas , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , beta-Lactamas/química , beta-Lactamas/farmacologia , Penicilinas/química , Penicilinas/metabolismo , Penicilinas/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/química
5.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894491

RESUMO

Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to ß-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-ß-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (ß-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded ß-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-ß-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Proteínas de Ligação às Penicilinas/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Meticilina/metabolismo , Meticilina/farmacologia , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Monobactamas/metabolismo , Proteínas de Bactérias/química , Testes de Sensibilidade Microbiana
6.
Chem Biol Interact ; 374: 110383, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754228

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening superbug causing infectious diseases such as pneumonia, endocarditis, osteomyelitis, etc. Conventional antibiotics are ineffective against MRSA infections due to their resistance mechanism against the antibiotics. The Penicillin Binding Protein (PBP2a) inhibits the activity of antibiotics by hydrolyzing the ß-lactam ring. Thus, alternate treatment methods are needed for the treatment of MRSA infections. Natural bioactive compounds exhibit good inhibition efficiency against MRSA infections by hindering its enzymatic mechanism, efflux pump system, etc. The present work deals with identifying potential and non-toxic natural bioactive compounds (ligands) through molecular docking studies through StarDrop software. Various natural bioactive compounds which are effective against MRSA infections were docked with the protein (6VVA). The ligands having good binding energy values and pharmacokinetic and drug-likeness properties have been illustrated as potential ligands for treating MRSA infections. From this exploration, Luteolin, Kaempferol, Chlorogenic acid, Sinigrin, Zingiberene, 1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-1-ene, and Curcumin have found with good binding energies of -8.6 kcal/mol, -8.4 kcal/mol, -8.2 kcal/mol, -7.5 kcal/mol, -7.4 kcal/mol, -7.3 kcal/mol, and -7.2 kcal/mol, respectively.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Testes de Sensibilidade Microbiana
7.
J Bacteriol ; 204(12): e0023922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36317921

RESUMO

The class A penicillin-binding proteins (aPBPs), PBP1A and PBP1B, are major peptidoglycan synthases that synthesize more than half of the peptidoglycan per generation in Escherichia coli. Whereas aPBPs have distinct roles in peptidoglycan biosynthesis during growth (i.e., elongation and division), they are semiredundant; disruption of either is rescued by the other to maintain envelope homeostasis and promote proper growth. Acinetobacter baumannii is a nosocomial pathogen that has a high propensity to overcome antimicrobial treatment. A. baumannii contains both PBP1A and PBP1B (encoded by mrcA and mrcB, respectively), but only mrcA deletion decreased fitness and contributed to colistin resistance through inactivation of lipooligosaccharide biosynthesis, indicating that PBP1B was not functionally redundant with the PBP1A activity. While previous studies suggested a distinct role for PBP1A in division, it was unknown whether its role in septal peptidoglycan biosynthesis was direct. Here, we show that A. baumannii PBP1A has a direct role in division through interactions with divisome components. PBP1A localizes to septal sites during growth, where it interacts with the transpeptidase PBP3, an essential division component that regulates daughter cell formation. PBP3 overexpression was sufficient to rescue the division defect in ΔmrcA A. baumannii; however, PBP1A overexpression was not sufficient to rescue the septal defect when PBP3 was inhibited, suggesting that their activity is not redundant. Overexpression of a major dd-carboxypeptidase, PBP5, also restored the canonical A. baumannii coccobacilli morphology in ΔmrcA cells. Together, these data support a direct role for PBP1A in A. baumannii division and highlights its role as a septal peptidoglycan synthase. IMPORTANCE Peptidoglycan biosynthesis is a validated target of ß-lactam antibiotics, and it is critical that we understand essential processes in multidrug-resistant pathogens such as Acinetobacter baumannii. While model systems such as Escherichia coli have shown that PBP1A is associated with side wall peptidoglycan synthesis, we show herein that A. baumannii PBP1A directly interacts with the divisome component PBP3 to promote division, suggesting a unique role for the enzyme in this highly drug-resistant nosocomial pathogen. A. baumannii demonstrated unanticipated resistance and tolerance to envelope-targeting antibiotics, which may be driven by rewired peptidoglycan machinery and may underlie therapeutic failure during antibiotic treatment.


Assuntos
Acinetobacter baumannii , Infecção Hospitalar , Proteínas de Escherichia coli , Peptidoglicano Glicosiltransferase , Humanos , Acinetobacter baumannii/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Escherichia coli , Antibacterianos/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/química , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/metabolismo
8.
Eur J Med Chem ; 229: 114050, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34922190

RESUMO

Available therapeutic strategies are urgently needed to conquer multidrug resistance of MRSA. A visible effort was guided towards the advancement of novel antibacterial framework of naphthalimide corbelled aminothiazoximes, and desired to assert some insight on the conjunction of individual pharmacophore with distinct biological activities and unique action mechanism. Preliminary assessment displayed that dimethylenediamine derivative 13d presented a wonderful inhibition on MRSA (MIC = 0.5 µg/mL), and showed excellent membrane selectivity (HC50 > 200 µg/mL) from an electrostatic distinction of the electronegative bacterial membranes and the electroneutral mammalian membranes. Moreover, 13d could effectually relieve the development of MRSA resistance. Investigations into explaining the mechanism of anti-MRSA disclosed that 13d displayed strong lipase affinity, which facilitated its permeation into cell membrane, causing membrane depolarization, leakage of cytoplasmic contents and lactate dehydrogenase (LDH) inhibition. Meanwhile, 13d could exert interaction with DNA to hinder biological function of DNA, and disrupt the antioxidant defense system of MRSA through up-regulation of ROS subjected the strain to oxidative stress. In particular, the unanticipated mechanism for naphthalimide corbelled aminothiazoximes that 13d could suppress the expression of PBP2a by inducing allosteric modulation of PBP2a and triggering the open of the active site, was discovered for the first time. These findings of naphthalimide corbelled aminothiazoximes as a small-molecule class of anti-MRSA agents held promise in strategies for treatment of MRSA infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Naftalimidas/química , Oximas/química , Proteínas de Ligação às Penicilinas/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/química , Relação Estrutura-Atividade
9.
J Biomol Struct Dyn ; 40(22): 12106-12117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34424132

RESUMO

Methicillin Resistant Staphylococcus aureus (MRSA) is a major cause of severe hospital and infections acquired by the population and related morbidity and mortality. In this unique situation, there is a need of dynamic strong drug candidates to control MRSA diseases. Thus, the present work focuses on the synthesis and characterization of pyrimidinones and pyrimidinthiones coupled pyridine derivatives as anti-MRSA agent. The synthesized compounds were characterized by different spectroscopic techniques and evaluated against MRSA strain. Among them, 4e and 4 g possessed better antibacterial activity with MIC values of 10 µg and 8 µg respectively. The key determinant of the wide range beta-lactam resistance in MRSA strains is the Penicillin-Binding Protein 2a (PBP2a) but the gene encodes PBP2a which has a low affinity towards ß-lactam antibiotics. Because of this, the present investigation focused on the mechanism of PBP2a protein binding studies by in-silico studies. The synthesized compounds showed very good interactions with PBP2A compared with standard drug Vancomycin, among them compound 4 g showed better interaction with the binding score of -9.8 kcal/mol. Antibacterial activity was validated with molecular docking and molecular dynamic simulation. Simulation results revealed that protein-ligand interactions of 4 g compound stably sustained up to 20,000ps.Communicated by Ramaswamy H. Sarma.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Ligação às Penicilinas/química , Piridinas/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias
10.
J Biomol Struct Dyn ; 40(21): 10561-10577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34243699

RESUMO

Methicillin-Resistant Staphylococcus aureus (MRSA), a pathogenic bacterium that causes life-threatening outbreaks such as community-onset and nosocomial infections as emerging 'superbug'. Time and motion study of its virulent property developed resistance against most of the antibiotics such as Vancomycin. Thereby, to curb this problem entails the development of new therapeutic agents. Plant-derived antimicrobial agents have recently piqued people's interest, so in this research, 186 flavonoids compound selected to unmask the best candidates that can act as potent inhibitors against the Penicillin Binding Protein-2a (PBP-2a) of MRSA. Molecular docking performed using PyRx and GOLD suite to determine the binding affinities and interactions between the phytochemicals and the PBP-2a. The selected candidates strongly interact with the different amino acid residues. The 30 ns molecular dynamics (MD) simulations with five top-ranked compounds such as Naringin, Hesperidin, Neohesperidin, Didymin and Icariin validated the docking interactions. These findings are also strongly supported by root-mean-square deviation, root-mean-square fluctuation and the radius of gyration. ADME/T analysis demonstrates that these candidates appear to be safer inhibitors. Our findings point to natural flavonoids as a promising and readily available source of adjuvant antimicrobial therapy against resistant strains in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Flavonoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas/química
11.
ACS Chem Biol ; 16(11): 2604-2611, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34699170

RESUMO

Natural products are a bountiful source of bioactive molecules. Unfortunately, discovery of novel bioactive natural products is challenging due to cryptic biosynthetic gene clusters, low titers, and arduous purifications. Herein, we describe SNaPP (Synthetic Natural Product Inspired Cyclic Peptides), a method for identifying NP-inspired bioactive peptides. SNaPP expedites bioactive molecule discovery by combining bioinformatics predictions of nonribosomal peptide synthetases with chemical synthesis of the predicted natural products (pNPs). SNaPP utilizes a recently discovered cyclase, the penicillin binding protein-like cyclase, as the lynchpin for the development of a library of head-to-tail cyclic peptide pNPs. Analysis of 500 biosynthetic gene clusters allowed for identification of 131 novel pNPs. Fifty-one diverse pNPs were synthesized using solid phase peptide synthesis and solution-phase cyclization. Antibacterial testing revealed 14 pNPs with antibiotic activity, including activity against multidrug-resistant Gram-negative bacteria. Overall, SNaPP demonstrates the power of combining bioinformatics predictions with chemical synthesis to accelerate the discovery of bioactive molecules.


Assuntos
Produtos Biológicos/química , Peptídeos Cíclicos/química , Antibacterianos/química , Antibacterianos/farmacologia , Biologia Computacional , Ciclização , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica , Proteínas de Ligação às Penicilinas/química , Técnicas de Síntese em Fase Sólida
12.
PLoS One ; 16(10): e0258359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653211

RESUMO

Antimicrobial resistance (AMR) mediated by ß-lactamases is the major and leading cause of resistance to penicillins and cephalosporins among Gram-negative bacteria. ß-Lactamases, periplasmic enzymes that are widely distributed in the bacterial world, protect penicillin-binding proteins (PBPs), the major cell wall synthesizing enzymes, from inactivation by ß-lactam antibiotics. Developing novel PBP inhibitors with a non-ß-lactam scaffold could potentially evade this resistance mechanism. Based on the structural similarities between the evolutionary related serine ß-lactamases and PBPs, we investigated whether the potent ß-lactamase inhibitor, vaborbactam, could also form an acyl-enzyme complex with Pseudomonas aeruginosa PBP3. We found that this cyclic boronate, vaborbactam, inhibited PBP3 (IC50 of 262 µM), and its binding to PBP3 increased the protein thermal stability by about 2°C. Crystallographic analysis of the PBP3:vaborbactam complex reveals that vaborbactam forms a covalent bond with the catalytic S294. The amide moiety of vaborbactam hydrogen bonds with N351 and the backbone oxygen of T487. The carboxyl group of vaborbactam hydrogen bonds with T487, S485, and S349. The thiophene ring and cyclic boronate ring of vaborbactam form hydrophobic interactions, including with V333 and Y503. The active site of the vaborbactam-bound PBP3 harbors the often observed ligand-induced formation of the aromatic wall and hydrophobic bridge, yet the residues involved in this wall and bridge display much higher temperature factors compared to PBP3 structures bound to high-affinity ß-lactams. These insights could form the basis for developing more potent novel cyclic boronate-based PBP inhibitors to inhibit these targets and overcome ß-lactamases-mediated resistance mechanisms.


Assuntos
Ácidos Borônicos/química , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Inibidores de beta-Lactamases/química , Domínio Catalítico , Simulação de Dinâmica Molecular , Proteínas de Ligação às Penicilinas/química , Ligação Proteica , Homologia Estrutural de Proteína , Temperatura , Difração de Raios X , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/química
13.
mBio ; 12(5): e0234621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544272

RESUMO

Members of the Rhizobiales are polarly growing bacteria that lack homologs of the canonical Rod complex. To investigate the mechanisms underlying polar cell wall synthesis, we systematically probed the function of cell wall synthesis enzymes in the plant pathogen Agrobacterium tumefaciens. The development of fluorescent d-amino acid dipeptide (FDAAD) probes, which are incorporated into peptidoglycan by penicillin-binding proteins in A. tumefaciens, enabled us to monitor changes in growth patterns in the mutants. Use of these fluorescent cell wall probes and peptidoglycan compositional analysis demonstrate that a single class A penicillin-binding protein is essential for polar peptidoglycan synthesis. Furthermore, we find evidence of an additional mode of cell wall synthesis that requires ld-transpeptidase activity. Genetic analysis and cell wall targeting antibiotics reveal that the mechanism of unipolar growth is conserved in Sinorhizobium and Brucella. This work provides insights into unipolar peptidoglycan biosynthesis employed by the Rhizobiales during cell elongation. IMPORTANCE While the structure and function of the bacterial cell wall are well conserved, the mechanisms responsible for cell wall biosynthesis during elongation are variable. It is increasingly clear that rod-shaped bacteria use a diverse array of growth strategies with distinct spatial zones of cell wall biosynthesis, including lateral elongation, unipolar growth, bipolar elongation, and medial elongation. Yet the vast majority of our understanding regarding bacterial elongation is derived from model organisms exhibiting lateral elongation. Here, we explore the role of penicillin-binding proteins in unipolar elongation of Agrobacterium tumefaciens and related bacteria within the Rhizobiales. Our findings suggest that penicillin-binding protein 1a, along with a subset of ld-transpeptidases, drives unipolar growth. Thus, these enzymes may serve as attractive targets for biocontrol of pathogenic Rhizobiales.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética
14.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360797

RESUMO

A novel series of N-substituted cis- and trans-3-aryl-4-(diethoxyphosphoryl)azetidin-2-ones were synthesized by the Kinugasa reaction of N-methyl- or N-benzyl-(diethyoxyphosphoryl)nitrone and selected aryl alkynes. Stereochemistry of diastereoisomeric adducts was established based on vicinal H3-H4 coupling constants in azetidin-2-one ring. All the obtained azetidin-2-ones were evaluated for the antiviral activity against a broad range of DNA and RNA viruses. Azetidin-2-one trans-11f showed moderate inhibitory activity against human coronavirus (229E) with EC50 = 45 µM. The other isomer cis-11f was active against influenza A virus H1N1 subtype (EC50 = 12 µM by visual CPE score; EC50 = 8.3 µM by TMS score; MCC > 100 µM, CC50 = 39.9 µM). Several azetidin-2-ones 10 and 11 were tested for their cytostatic activity toward nine cancerous cell lines and several of them appeared slightly active for Capan-1, Hap1 and HCT-116 cells values of IC50 in the range 14.5-97.9 µM. Compound trans-11f was identified as adjuvant of oxacillin with significant ability to enhance the efficacy of this antibiotic toward the highly resistant S. aureus strain HEMSA 5. Docking and molecular dynamics simulations showed that enantiomer (3R,4S)-11f can be responsible for the promising activity due to the potency in displacing oxacillin at ß-lactamase, thus protecting the antibiotic from undesirable biotransformation.


Assuntos
Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/farmacologia , Antivirais/química , Antivirais/farmacologia , Azetidinas/farmacologia , Infecções/tratamento farmacológico , Antibacterianos/química , Antibacterianos/farmacologia , Azetidinas/química , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Coronavirus Humano 229E/efeitos dos fármacos , Citostáticos/química , Citostáticos/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Simulação de Dinâmica Molecular , Oxacilina/química , Proteínas de Ligação às Penicilinas/química , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo , beta-Lactamases/química
15.
Biomolecules ; 11(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356681

RESUMO

Novel antimicrobial strategies are urgently required because of the rising threat of multi drug resistant bacterial strains and the infections caused by them. Among the available target structures, the so-called penicillin binding proteins are of particular interest, owing to their good accessibility in the periplasmic space, and the lack of homologous proteins in humans, reducing the risk of side effects of potential drugs. In this report, we focus on the interaction of the innovative ß-lactam antibiotic AIC499 with penicillin binding protein 3 (PBP3) from Escherichia coli and Pseudomonas aeruginosa. This recently developed monobactam displays broad antimicrobial activity, against Gram-negative strains, and improved resistance to most classes of ß-lactamases. By analyzing crystal structures of the respective complexes, we were able to explore the binding mode of AIC499 to its target proteins. In addition, the apo structures determined for PBP3, from P. aeruginosa and the catalytic transpeptidase domain of the E. coli orthologue, provide new insights into the dynamics of these proteins and the impact of drug binding.


Assuntos
Monobactamas/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Monobactamas/química , Proteínas de Ligação às Penicilinas/genética , Conformação Proteica , Pseudomonas aeruginosa
16.
J Bacteriol ; 203(17): e0023421, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34124943

RESUMO

High-molecular-mass penicillin-binding proteins (PBPs) are enzymes that catalyze the biosynthesis of bacterial cell wall peptidoglycan. The Gram-positive bacterial pathogen Streptococcus agalactiae (group B streptococcus [GBS]) produces five high-molecular-mass PBPs, namely, PBP1A, PBP1B, PBP2A, PBP2B, and PBP2X. Among these, only PBP2X is essential for cell viability, whereas the other four PBPs are individually dispensable. The biological function of the four nonessential PBPs is poorly characterized in GBS. We deleted the pbp1a, pbp1b, pbp2a, and pbp2b genes individually from a genetically well-characterized serotype V GBS strain and studied the phenotypes of the four isogenic mutant strains. Compared to the wild-type parental strain, (i) none of the pbp isogenic mutant strains had a significant growth defect in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) rich medium, (ii) isogenic mutant Δpbp1a and Δpbp1b strains had significantly increased susceptibility to penicillin and ampicillin, and (iii) isogenic mutant Δpbp1a and Δpbp2b strains had significantly longer chain lengths. Using saturated transposon mutagenesis and transposon insertion site sequencing, we determined the genes essential for the viability of the wild-type GBS strain and each of the four isogenic pbp deletion mutant strains in THY rich medium. The pbp1a gene is essential for cell viability in the pbp2b deletion background. Reciprocally, pbp2b is essential in the pbp1a deletion background. Moreover, the gene encoding RodA, a peptidoglycan polymerase that works in conjunction with PBP2B, is also essential in the pbp1a deletion background. Together, our results suggest functional overlap between PBP1A and the PBP2B-RodA complex in GBS cell wall peptidoglycan biosynthesis. IMPORTANCE High-molecular-mass penicillin-binding proteins (HMM PBPs) are enzymes required for bacterial cell wall biosynthesis. Bacterial pathogen group B streptococcus (GBS) produces five distinct HMM PBPs. The biological functions of these proteins are not well characterized in GBS. In this study, we performed a comprehensive deletion analysis of genes encoding HMM PBPs in GBS. We found that deleting certain PBP-encoding genes altered bacterial susceptibility to beta-lactam antibiotics, cell morphology, and the essentiality of other enzymes involved in cell wall peptidoglycan synthesis. The results of our study shed new light on the biological functions of PBPs in GBS.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus agalactiae/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Deleção de Genes , Mutagênese , Mutagênese Insercional , Proteínas de Ligação às Penicilinas/química , Penicilinas/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/genética , Streptococcus agalactiae/crescimento & desenvolvimento
17.
PLoS Genet ; 17(4): e1009366, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33857142

RESUMO

SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.


Assuntos
Proteínas de Bactérias/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação às Penicilinas/ultraestrutura , Peptidoglicano Glicosiltransferase/ultraestrutura , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/ultraestrutura , Peptidoglicano Glicosiltransferase/química , Peptidoglicano Glicosiltransferase/genética , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/ultraestrutura
18.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33713128

RESUMO

Penicillin-binding protein-type thioesterases (PBP-type TEs) are a recently identified group of peptide cyclases that catalyze head-to-tail macrolactamization of nonribosomal peptides. PenA, a new member of this group, is involved in the biosyntheses of cyclic pentapeptides. In this study, we demonstrated the enzymatic activity of PenA in vitro, and analyzed its substrate scope with a series of synthetic substrates. A comparison of the reaction profiles between PenA and SurE, a representative PBP-type TE, showed that PenA is more specialized for small peptide cyclization. A computational model provided a possible structural rationale for the altered specificity for substrate chain lengths.


Assuntos
Proteínas de Ligação às Penicilinas/metabolismo , Penicilinas/química , Peptídeos Cíclicos/metabolismo , Biocatálise , Ciclização , Proteínas de Ligação às Penicilinas/química , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/química , Especificidade por Substrato
19.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593978

RESUMO

Multidrug-resistant (MDR) pathogens pose a significant public health threat. A major mechanism of resistance expressed by MDR pathogens is ß-lactamase-mediated degradation of ß-lactam antibiotics. The diazabicyclooctane (DBO) compounds zidebactam and WCK 5153, recognized as ß-lactam "enhancers" due to inhibition of Pseudomonas aeruginosa penicillin-binding protein 2 (PBP2), are also class A and C ß-lactamase inhibitors. To structurally probe their mode of PBP2 inhibition as well as investigate why P. aeruginosa PBP2 is less susceptible to inhibition by ß-lactam antibiotics compared to the Escherichia coli PBP2, we determined the crystal structure of P. aeruginosa PBP2 in complex with WCK 5153. WCK 5153 forms an inhibitory covalent bond with the catalytic S327 of PBP2. The structure suggests a significant role for the diacylhydrazide moiety of WCK 5153 in interacting with the aspartate in the S-X-N/D PBP motif. Modeling of zidebactam in the active site of PBP2 reveals a similar binding mode. Both DBOs increase the melting temperature of PBP2, affirming their stabilizing interactions. To aid in the design of DBOs that can inhibit multiple PBPs, the ability of three DBOs to interact with P. aeruginosa PBP3 was explored crystallographically. Even though the DBOs show covalent binding to PBP3, they destabilized PBP3. Overall, the studies provide insights into zidebactam and WCK 5153 inhibition of PBP2 compared to their inhibition of PBP3 and the evolutionarily related KPC-2 ß-lactamase. These molecular insights into the dual-target DBOs advance our knowledge regarding further DBO optimization efforts to develop novel potent ß-lactamase-resistant, non-ß-lactam PBP inhibitors.IMPORTANCE Antibiotic resistance is a significant clinical problem. Developing novel antibiotics that overcome known resistance mechanisms is highly desired. Diazabicyclooctane inhibitors such as zidebactam possess this potential as they readily inactivate penicillin-binding proteins, yet cannot be degraded by ß-lactamases. In this study, we characterized the inhibition by diazabicyclooctanes of penicillin-binding proteins PBP2 and PBP3 from Pseudomonas aeruginosa using protein crystallography and biophysical analyses. These structures and analyses help define the antibiotic properties of these inhibitors, explain the decreased susceptibility of P. aeruginosa PBP2 to be inhibited by ß-lactam antibiotics, and provide insights that could be used for further antibiotic development.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Ciclo-Octanos/farmacologia , Octanos/farmacologia , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Piperidinas/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/metabolismo , Compostos Azabicíclicos/metabolismo , Compostos Bicíclicos com Pontes/metabolismo , Cristalização , Ciclo-Octanos/metabolismo , Testes de Sensibilidade Microbiana , Octanos/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Piperidinas/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Inibidores de beta-Lactamases/farmacologia
20.
Acc Chem Res ; 54(4): 917-929, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33512995

RESUMO

The need for new classes of antibacterials is genuine in light of the dearth of clinical options for the treatment of bacterial infections. The prodigious discoveries of antibiotics during the 1940s to 1970s, a period wistfully referred to as the Golden Age of Antibiotics, have not kept up in the face of emergence of resistant bacteria in the past few decades. There has been a renewed interest in old drugs, the repurposing of the existing antibiotics and pairing of synergistic antibiotics or of an antibiotic with an adjuvant. Notwithstanding, discoveries of novel classes of these life-saving drugs have become increasingly difficult, calling for new paradigms. We describe, herein, three strategies from our laboratories toward discoveries of new antibacterials and adjuvants using computational and multidisciplinary experimental methods. One approach targets penicillin-binding proteins (PBPs), biosynthetic enzymes of cell-wall peptidoglycan, for discoveries of non-ß-lactam inhibitors. Oxadiazoles and quinazolinones emerged as two structural classes out of these efforts. Several hundred analogs of these two classes of antibiotics have been synthesized and fully characterized in our laboratories. A second approach ventures into inhibition of allosteric regulation of cell-wall biosynthesis. The mechanistic details of allosteric regulation of PBP2a of Staphylococcus aureus, discovered in our laboratories, is outlined. The allosteric site in this protein is at 60 Å distance to the active site, whereby ligand binding at the former makes access to the latter by the substrate possible. We have documented that both quinazolinones and ceftaroline, a fifth-generation cephalosporin, bind to the allosteric site in manifestation of the antibacterial activity. Attempts at inhibition of the regulatory phosphorylation events identified three classes of antibacterial adjuvants and one class of antibacterials, the picolinamides. The chemical structures for these hits went through diversification by synthesis of hundreds of analogs. These analogs were characterized in various assays for identification of leads with adjuvant and antibacterial activities. Furthermore, we revisited the mechanism of bulgecins, a class of adjuvants discovered and abandoned in the 1980s. These compounds potentiate the activities of ß-lactam antibiotics by the formation of bulges at the sites of septum formation during bacterial replication, which are points of structural weakness in the envelope. These bulges experience rupture, which leads to bacterial death. Bulgecin A inhibits the lytic transglycosylase Slt of Pseudomonas aeruginosa as a likely transition-state mimetic for its turnover of the cell-wall peptidoglycan. Once damage to cell wall is inflicted by a ß-lactam antibiotic, the function of Slt is to repair the damage. When Slt is inhibited by bulgecin A, the organism cannot cope with it and would undergo rapid lysis. Bulgecin A is an effective adjuvant of ß-lactam antibiotics. These discoveries of small-molecule classes of antibacterials or of adjuvants to antibacterials hold promise in strategies for treatment of bacterial infections.


Assuntos
Adjuvantes Imunológicos/química , Antibacterianos/química , Sítio Alostérico , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Descoberta de Drogas , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/metabolismo , Pseudomonas aeruginosa/enzimologia , Quinazolinonas/química , Quinazolinonas/metabolismo , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...